当前位置: 首页 > news >正文

wordpress博客平台关键词优化公司哪家强

wordpress博客平台,关键词优化公司哪家强,企业互联网推广,建筑设计自学网站0、前言: SVM应用:主要针对小样本数据进行学习、分类和回归(预测),能解决神经网络不能解决的过学习问题,有很好的泛化能力。(注意:SVM算法的数学原理涉及知识点比较多,所…

0、前言:

  • SVM应用:主要针对小样本数据进行学习、分类和回归(预测),能解决神经网络不能解决的过学习问题,有很好的泛化能力。(注意:SVM算法的数学原理涉及知识点比较多,所以应用比理解更重要)
  • 原理:由二分类问题引出,如下图,问题是找到一条最宽的路劲划分两种分类,且路径1/2处的直线就是最优的直线。
    在这里插入图片描述
    进而将问题由二维(x轴和y轴)特征数据的分类拓展到更高维度的分类问题中,将问题转换为了多维问题,就会涉及向量和求极值,最终将支持向量的优化目标就由间隔最大化问题转化为了标准凸优化问题(标准凸优化是计算机当中数学问题的描述),然后就可以得到支持向量机算法。
  • 支持向量机算法:
    输入:m条训练数据S = {(x1,y1),(x2,y2),…,(xm,ym)}
    前提:训练数据中正负采样存在分离平面
    模型假设:H (关于w,x,b)
    计算w和b的最优解
    输出模型:H
  • 支持向量机的对偶:将求解代约束的凸优化问题转化为求解它的对偶问题。然后借助拉格朗日求解对应的函数,这个函数的意义对于二维特征来说就是一条可以划分二分类问题的最优直线,对于三维特征来说就是一个可以划分空间中二分类问题的最优平面。
  • 如下图所示就是二维特征的SVM所求直线A
    在这里插入图片描述
  • 如下图就是多维特征求最优划分的平面,因为在原始空间中,无法用一条直线划分,进而采用核技巧,将问题放到高维空间,进而划分数据,核技巧也称核变换是解决低纬度不可分问题的一个技巧。
    在这里插入图片描述
  • 支持向量机当中会有一些核函数,有线性核函数和高斯核函数。

1、支持向量机的分类示例:

  • 目的:通过sklearn.datasets中的make_blobs生成2个类型的聚类,然后用SVC模型训练数据,借助模型的属性生成分类最优分界线,同时生成支持向量对应的直线
  • 代码
# 导库
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt# SVM分类和回归库
from sklearn.svm import SVC,SVR
# 生成二分类数据
from sklearn.datasets import make_blobs
data,target = make_blobs(centers=2)
plt.scatter(data[:,0],data[:,1],c=target)
# 训练数据
# pd.DataFrame(data).head()
# data.shape,target.shape
sv = SVC(C=1,kernel='linear')
'''
SVC当中的参数说明:
1、C:越大表示约分类越严格,对于一些噪声就不%%sh略,可能会导致分类效果差
2、kernel:核函数,一般选默认的rbf(高斯核函数),建议使用默认,
此外还有:linear(线性核函数)、poly(多项式核函数)等
'''
sv.fit(data,target)# 画出通过SVM训练之后的最优分界线
# w1*x1+w2*x2+b=0
# 首先获取斜率和截距
# sv.coef_[0] # array([-0.69045562, -0.92961922])
# sv.coef_.shape # (1, 2)
w1,w2 = sv.coef_[0]
b = sv.intercept_[0]
# 画分界线
plt.scatter(data[:,0],data[:,1],c=target)
x1 = np.linspace(-7,-2,100)
x2 = -1 * (w1*x1+b)/w2
plt.plot(x1,x2,c='r')
# 画支持向量
x1_s = sv.support_vectors_[:,0]
x2_s = sv.support_vectors_[:,1]
plt.scatter(x1_s,x2_s,s=200,alpha=0.3,c='b')
# 画支持向量对应的直线,用虚线表示
b1 = -1*(w1*x1_s[1]+w2*x2_s[1])
b2 = -1*(w1*x1_s[2]+w2*x2_s[2])
x2_1 = -1 * (w1*x1+b1)/w2
x2_2 = -1 * (w1*x1+b2)/w2
plt.plot(x1,x2_1,linestyle='--',linewidth=5,c='r')
plt.plot(x1,x2_2,linestyle='--',linewidth=5,c='r')
  • 结果
    在这里插入图片描述

2、支持向量机回归示例:

  • 目的:用SVM算法中的SVR预测sin函数
  • 代码:
# 导包
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.svm import SVR
# 制作训练数据
x = np.random.random(150)*10
y = np.sin(x)# 添加噪声
y[::5] += np.random.randn(30)*0.1plt.scatter(x,y)
# 制作测试数据
x_test = np.linspace(0,10,100)
# 训练数据
sv_line = SVR(kernel='linear')
sv_line.fit(x.reshape(-1,1),y)
y_line_pred = sv_line.predict(x_test.reshape(-1,1))sv_poly = SVR(kernel='poly')
sv_poly.fit(x.reshape(-1,1),y)
y_poly_pred = sv_poly.predict(x_test.reshape(-1,1))sv_rbf = SVR(kernel='rbf')
sv_rbf.fit(x.reshape(-1,1),y)
y_rbf_pred = sv_rbf.predict(x_test.reshape(-1,1))
# 画图
plt.scatter(x,y)
plt.plot(x_test,y_line_pred,label='line',c='r')
plt.plot(x_test,y_poly_pred,label='ploy')
plt.plot(x_test,y_rbf_pred,label='rbf')
plt.legend(loc='lower left')
  • 结果:
    在这里插入图片描述

总结:

  • 对应二维平面不可分的数据,使用高斯核函数(kernel=‘rbf’)是是最好的选择

http://www.jinmujx.cn/news/79244.html

相关文章:

  • oracle数据库网站开发找营销推广团队
  • 销售性网站建设需求免费快速网站
  • wordpress怎么增加语言怎么快速优化关键词
  • 济南哪里做网站好搜索排名优化
  • 网站的新闻模块怎么做站长工具seo综合查询关键词
  • 电子商务旅游网站建设策划书搜狗营销
  • 做导购网站 商品如何自己创建网址
  • 网站架构规划网络营销专业学校排名
  • 一家专门做爆品印刷的网站网站收录怎么做
  • ps做网站要多大比较正规的代运营
  • 邯郸教育网站建设开发网站的流程是
  • 网站营销方案seo网站查询工具
  • 做网站要实名吗刷外链工具
  • h5制作平台教程什么叫seo优化
  • 规划设计公司一般的毛利率是多seo简单优化操作步骤
  • 新县住房和城乡规划建设网站淘宝客seo推广教程
  • 软件测试培训总结百度竞价推广账户优化
  • 时尚网站设计百度网站怎么申请注册
  • 网站公司 北京百度小说风云榜排名完结
  • 长春真正免费的建站系统百度seo算法
  • 做外围网站代理合法不个人在线做网站免费
  • 电商网站开发研究内容和预期成果目前常用的搜索引擎有哪些
  • 在线定制网站官网网络营销策划书2000字
  • 长春网站设计哪家好seo公司seo教程
  • 广州专业网站建设价格宁波seo推广咨询
  • 用flask做的网站有哪些怎样推广自己的网站
  • 郑州有没有做妓男平台以及网站影视后期哪个培训靠谱
  • pc端宣传网站开发代写文章哪里找写手
  • 南京关键词网站排名房地产销售怎么找客户
  • jsp高级动态网站开发试卷百度人工优化