当前位置: 首页 > news >正文

网站的新闻模块怎么做站长工具seo综合查询关键词

网站的新闻模块怎么做,站长工具seo综合查询关键词,做英语真题的网站,小程序源码电商# 可以使用以下3种方式构建模型: # # 1,继承nn.Module基类构建自定义模型。 # # 2,使用nn.Sequential按层顺序构建模型。 # # 3,继承nn.Module基类构建模型并辅助应用模型容器进行封装(nn.Sequential,nn.ModuleList,nn.ModuleDict…
# 可以使用以下3种方式构建模型:
#
# 1,继承nn.Module基类构建自定义模型。
#
# 2,使用nn.Sequential按层顺序构建模型。
#
# 3,继承nn.Module基类构建模型并辅助应用模型容器进行封装(nn.Sequential,nn.ModuleList,nn.ModuleDict)。
#
# 其中 第1种方式最为常见,第2种方式最简单,第3种方式最为灵活也较为复杂。
# 一、继承nn.Module基类构建自定义模型
from torch import nn
class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.conv1 = nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3)self.pool1 = nn.MaxPool2d(kernel_size = 2,stride = 2)self.conv2 = nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5)self.pool2 = nn.MaxPool2d(kernel_size = 2,stride = 2)self.dropout = nn.Dropout2d(p = 0.1)self.adaptive_pool = nn.AdaptiveMaxPool2d((1,1))self.flatten = nn.Flatten()self.linear1 = nn.Linear(64,32)self.relu = nn.ReLU()self.linear2 = nn.Linear(32,1)def forward(self,x):x = self.conv1(x)x = self.pool1(x)x = self.conv2(x)x = self.pool2(x)x = self.dropout(x)x = self.adaptive_pool(x)x = self.flatten(x)x = self.linear1(x)x = self.relu(x)y = self.linear2(x)return y
net = Net()
print(net)
#查看参数
from torchkeras import summary
summary(net,input_shape= (3,32,32));

 # 二、使用nn.Sequential按层顺序构建模型 # 利用add_module方法

net = nn.Sequential()
net.add_module("conv1",nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3))
net.add_module("pool1",nn.MaxPool2d(kernel_size = 2,stride = 2))
net.add_module("conv2",nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5))
net.add_module("pool2",nn.MaxPool2d(kernel_size = 2,stride = 2))
net.add_module("dropout",nn.Dropout2d(p = 0.1))
net.add_module("adaptive_pool",nn.AdaptiveMaxPool2d((1,1)))
net.add_module("flatten",nn.Flatten())
net.add_module("linear1",nn.Linear(64,32))
net.add_module("relu",nn.ReLU())
net.add_module("linear2",nn.Linear(32,1))
print(net)
# 利用变长参数
net = nn.Sequential(nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3),nn.MaxPool2d(kernel_size = 2,stride = 2),nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5),nn.MaxPool2d(kernel_size = 2,stride = 2),nn.Dropout2d(p = 0.1),nn.AdaptiveMaxPool2d((1,1)),nn.Flatten(),nn.Linear(64,32),nn.ReLU(),nn.Linear(32,1)
)
print(net)
# 三、继承nn.Module基类构建模型并辅助应用模型容器进行封装
# nn.Sequential作为模型容器
class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.conv = nn.Sequential(nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3),nn.MaxPool2d(kernel_size = 2,stride = 2),nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5),nn.MaxPool2d(kernel_size = 2,stride = 2),nn.Dropout2d(p = 0.1),nn.AdaptiveMaxPool2d((1,1)))self.dense = nn.Sequential(nn.Flatten(),nn.Linear(64,32),nn.ReLU(),nn.Linear(32,1))def forward(self,x):x = self.conv(x)y = self.dense(x)return y
net = Net()
print(net)
# nn.ModuleList作为模型容器
# 注意下面中的ModuleList不能用Python中的列表代替。(即不用省略)
class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.layers = nn.ModuleList([nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3),nn.MaxPool2d(kernel_size = 2,stride = 2),nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5),nn.MaxPool2d(kernel_size = 2,stride = 2),nn.Dropout2d(p = 0.1),nn.AdaptiveMaxPool2d((1,1)),nn.Flatten(),nn.Linear(64,32),nn.ReLU(),nn.Linear(32,1)])def forward(self,x):for layer in self.layers:x = layer(x)return x
net = Net()
print(net)
# nn.ModuleDict作为模型容器
class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.layers_dict = nn.ModuleDict({"conv1":nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3),"pool": nn.MaxPool2d(kernel_size = 2,stride = 2),"conv2":nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5),"dropout": nn.Dropout2d(p = 0.1),"adaptive":nn.AdaptiveMaxPool2d((1,1)),"flatten": nn.Flatten(),"linear1": nn.Linear(64,32),"relu":nn.ReLU(),"linear2": nn.Linear(32,1)})def forward(self,x):layers = ["conv1","pool","conv2","pool","dropout","adaptive","flatten","linear1","relu","linear2","sigmoid"]for layer in layers:x = self.layers_dict[layer](x) # 只找有的 sigmoid是没有的return x
net = Net()
print(net)

http://www.jinmujx.cn/news/79239.html

相关文章:

  • 电子商务旅游网站建设策划书搜狗营销
  • 做导购网站 商品如何自己创建网址
  • 网站架构规划网络营销专业学校排名
  • 一家专门做爆品印刷的网站网站收录怎么做
  • ps做网站要多大比较正规的代运营
  • 邯郸教育网站建设开发网站的流程是
  • 网站营销方案seo网站查询工具
  • 做网站要实名吗刷外链工具
  • h5制作平台教程什么叫seo优化
  • 规划设计公司一般的毛利率是多seo简单优化操作步骤
  • 新县住房和城乡规划建设网站淘宝客seo推广教程
  • 软件测试培训总结百度竞价推广账户优化
  • 时尚网站设计百度网站怎么申请注册
  • 网站公司 北京百度小说风云榜排名完结
  • 长春真正免费的建站系统百度seo算法
  • 做外围网站代理合法不个人在线做网站免费
  • 电商网站开发研究内容和预期成果目前常用的搜索引擎有哪些
  • 在线定制网站官网网络营销策划书2000字
  • 长春网站设计哪家好seo公司seo教程
  • 广州专业网站建设价格宁波seo推广咨询
  • 用flask做的网站有哪些怎样推广自己的网站
  • 郑州有没有做妓男平台以及网站影视后期哪个培训靠谱
  • pc端宣传网站开发代写文章哪里找写手
  • 南京关键词网站排名房地产销售怎么找客户
  • jsp高级动态网站开发试卷百度人工优化
  • 怎么知道网站的域名自己建网站怎么弄
  • 哪个企业提供电子商务网站建设外包电商网店
  • 免费做优化的网站建设公司网站设计模板
  • 品牌宣传策划方案公司以优化为理由裁员合法吗
  • 营销型网站建设网盘搜索引擎