当前位置: 首页 > news >正文

软件技术买什么笔记本好韶关seo

软件技术买什么笔记本好,韶关seo,wordpress vip会员可见,深圳罗湖住房和建设局网站官网无论是自己、家人或是朋友、客户的照片,免不了有些是黑白的、被污损的、模糊的,总想着修复一下。作为一个程序员 或者 程序员的家属,当然都有责任满足他们的需求、实现他们的想法。除了这个,学习了本文的成果,或许你还…

无论是自己、家人或是朋友、客户的照片,免不了有些是黑白的、被污损的、模糊的,总想着修复一下。作为一个程序员 或者 程序员的家属,当然都有责任满足他们的需求、实现他们的想法。除了这个,学习了本文的成果,或许你还可以用来赚点小钱。

Windows下Python及Anaconda的安装与设置、代码执行之保姆指南icon-default.png?t=N7T8https://blog.csdn.net/beijinghorn/article/details/134347642

8 GPEN

8.1 论文Paper


GAN Prior Embedded Network for Blind Face Restoration in the Wild

Paper: https://arxiv.org/abs/2105.06070
Supplementary: https://www4.comp.polyu.edu.hk/~cslzhang/paper/GPEN-cvpr21-supp.pdf
Demo: https://vision.aliyun.com/experience/detail?spm=a211p3.14020179.J_7524944390.17.66cd4850wVDkUQ&tagName=facebody&children=EnhanceFace
ModelScope: https://www.modelscope.cn/models/damo/cv_gpen_image-portrait-enhancement/summary

作者:
Tao Yang, Peiran Ren, Xuansong Xie, https://cg.cs.tsinghua.edu.cn/people/~tyang
Lei Zhang https://www4.comp.polyu.edu.hk/~cslzhang

DAMO Academy, Alibaba Group, Hangzhou, China
Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China

8.2 功能

8.2.1 旧照修复Face Restoration
   

8.2.2 纹理重建Selfie Restoration

8.2.3 人脸重建Face Colorization

 

8.2.4 划痕修复Face Inpainting

8.2.5 Conditional Image Synthesis (Seg2Face)

8.3 News

(2023-02-15) GPEN-BFR-1024 and GPEN-BFR-2048 are now publicly available. Please download them via [ModelScope2].
(2023-02-15) We provide online demos via [ModelScope1] and [ModelScope2].
(2022-05-16) Add x1 sr model. Add --tile_size to avoid OOM.
(2022-03-15) Add x4 sr model. Try --sr_scale.
(2022-03-09) Add GPEN-BFR-2048 for selfies. I have to take it down due to commercial issues. Sorry about that.
(2021-12-29) Add online demos  Hugging Face Spaces. Many thanks to CJWBW and AK391.
(2021-12-16) Release a simplified training code of GPEN. It differs from our implementation in the paper, but could achieve comparable performance. We strongly recommend to change the degradation model.
(2021-12-09) Add face parsing to better paste restored faces back.
(2021-12-09) GPEN can run on CPU now by simply discarding --use_cuda.
(2021-12-01) GPEN can now work on a Windows machine without compiling cuda codes. Please check it out. Thanks to Animadversio. Alternatively, you can try GPEN-Windows. Many thanks to Cioscos.
(2021-10-22) GPEN can now work with SR methods. A SR model trained by myself is provided. Replace it with your own model if necessary.
(2021-10-11) The Colab demo for GPEN is available now google colab logo.

8.4 下载模型 Download models from Modelscope


Install modelscope:
https://www.modelscope.cn/models/damo/cv_gpen_image-portrait-enhancement-hires/summary
https://www.modelscope.cn/models/damo/cv_gpen_image-portrait-enhancement/summary
https://www.modelscope.cn/models/damo/cv_gpen_image-portrait-enhancement-hires/summary

pip install "modelscope[cv]" -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html
Run the following codes:

import cv2
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from modelscope.outputs import OutputKeys

portrait_enhancement = pipeline(Tasks.image_portrait_enhancement, model='damo/cv_gpen_image-portrait-enhancement-hires')
result = portrait_enhancement('https://modelscope.oss-cn-beijing.aliyuncs.com/test/images/marilyn_monroe_4.jpg')
cv2.imwrite('result.png', result[OutputKeys.OUTPUT_IMG])
It will automatically download the GPEN models. You can find the model in the local path ~/.cache/modelscope/hub/damo. Please note pytorch_model.pt, pytorch_model-2048.pt are respectively the 1024 and 2048 versions.

8.5 依赖项Usage


python: https://img.shields.io/badge/python-v3.7.4-green.svg?style=plastic
pytorch: https://img.shields.io/badge/pytorch-v1.7.0-green.svg?style=plastic
cuda: https://img.shields.io/badge/cuda-v10.2.89-green.svg?style=plastic
driver: https://img.shields.io/badge/driver-v460.73.01-green.svg?style=plastic
gcc: https://img.shields.io/badge/gcc-v7.5.0-green.svg?style=plastic

8.5.1 Clone this repository:

git clone https://github.com/yangxy/GPEN.git
cd GPEN

8.5.2 Download RetinaFace model and our pre-trained model (not our best model due to commercial issues) and put them into weights/.

RetinaFace-R50 https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/RetinaFace-R50.pth
ParseNet-latest https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/ParseNet-latest.pth
model_ir_se50 https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/model_ir_se50.pth
GPEN-BFR-512 https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/GPEN-BFR-512.pth
GPEN-BFR-512-D https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/GPEN-BFR-512-D.pth
GPEN-BFR-256 https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/GPEN-BFR-256.pth
GPEN-BFR-256-D https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/GPEN-BFR-256-D.pth
GPEN-Colorization-1024 https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/GPEN-Colorization-1024.pth
GPEN-Inpainting-1024 https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/GPEN-Inpainting-1024.pth
GPEN-Seg2face-512 https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/GPEN-Seg2face-512.pth
realesrnet_x1 https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/realesrnet_x1.pth
realesrnet_x2 https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/realesrnet_x2.pth
realesrnet_x4 https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/realesrnet_x4.pth


8.5.3 Restore face images:

python demo.py --task FaceEnhancement --model GPEN-BFR-512 --in_size 512 --channel_multiplier 2 --narrow 1 --use_sr --sr_scale 4 --use_cuda --save_face --indir examples/imgs --outdir examples/outs-bfr
Colorize faces:
python demo.py --task FaceColorization --model GPEN-Colorization-1024 --in_size 1024 --use_cuda --indir examples/grays --outdir examples/outs-colorization
Complete faces:
python demo.py --task FaceInpainting --model GPEN-Inpainting-1024 --in_size 1024 --use_cuda --indir examples/ffhq-10 --outdir examples/outs-inpainting
Synthesize faces:
python demo.py --task Segmentation2Face --model GPEN-Seg2face-512 --in_size 512 --use_cuda --indir examples/segs --outdir examples/outs-seg2face
Train GPEN for BFR with 4 GPUs:
CUDA_VISIBLE_DEVICES='0,1,2,3' python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 train_simple.py --size 1024 --channel_multiplier 2 --narrow 1 --ckpt weights --sample results --batch 2 --path your_path_of_croped+aligned_hq_faces (e.g., FFHQ)
When testing your own model, set --key g_ema.

Please check out run.sh for more details.

8.6 Main idea

8.7 Citation

If our work is useful for your research, please consider citing:

@inproceedings{Yang2021GPEN,
    title={GAN Prior Embedded Network for Blind Face Restoration in the Wild},
    author={Tao Yang, Peiran Ren, Xuansong Xie, and Lei Zhang},
    booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    year={2021}
}

8.8 License

© Alibaba, 2021. For academic and non-commercial use only.

8.9 Acknowledgments

We borrow some codes from Pytorch_Retinaface, stylegan2-pytorch, Real-ESRGAN, and GFPGAN.

8.10 Contact

If you have any questions or suggestions about this paper, feel free to reach me at yangtao9009@gmail.com.
 

http://www.jinmujx.cn/news/79592.html

相关文章:

  • 做品管圈网站域名收录查询工具
  • 电商网站的分辨率推广网站的文案
  • javaweb做视频网站难吗国际站seo优化是什么意思
  • 建的企业网站如何在百度搜到百度霸屏推广多少钱一个月
  • 怎么做废品收购网站广州seo公司官网
  • 做网站买服务器怎么样网络营销制度课完整版
  • 工厂的网站在哪里做的关键词排名seo
  • 类似一起做网店的网站福州seo技巧培训
  • 用iis做的网站怎么更改端口中国没有限制的搜索引擎
  • 个体营业执照网站备案服务器ip域名解析
  • 关于强化政府网站建设工作方案微商怎么引流被别人加
  • 日本乡村为什么要建设网站长沙网站优化体验
  • 网站服务器是主机吗免费观看短视频的app软件推荐
  • 通州顺德网站建设微信平台推广方法
  • 四川网站建设 旋风安阳企业网站优化外包
  • 宁波专业网站推广制作服务济南优化网站关键词
  • s上海网站建设广西网站建设制作
  • 网站进度表在线识别图片找原图
  • 国内主流的电商平台有哪些福建搜索引擎优化
  • html5做视频网站手机如何建立网站
  • 如何看一个关键词在某个网站是否被百度收录专业网络推广机构
  • java动态网站建设视频平台推广
  • 网站建设丶金手指下拉十五谷歌seo优化公司
  • 一个最简单的产品展示的asp网站应该如何做网络营销方法有哪几种
  • 个人 服务器 linux 建网站推广赚佣金的平台
  • 移动网站如何做权重bt磁力在线种子搜索神器
  • 网站开发建设类合同百度下载免费安装最新版
  • 家教网站建设刷外链网站
  • 网络架构模式有什么一键优化大师下载
  • iis配置网站开发环境seo日常优化内容是什么