当前位置: 首页 > news >正文

ppt做的最好的网站有哪些谷歌推广教程

ppt做的最好的网站有哪些,谷歌推广教程,网站开发需要哪些知识,上网站 ftpSpark spark-submit 提交应用程序 Spark支持三种集群管理方式 Standalone—Spark自带的一种集群管理方式,易于构建集群。Apache Mesos—通用的集群管理,可以在其上运行Hadoop MapReduce和一些服务应用。Hadoop YARN—Hadoop2中的资源管理器。 注意&…

Spark spark-submit 提交应用程序

Spark支持三种集群管理方式

  • Standalone—Spark自带的一种集群管理方式,易于构建集群。
  • Apache Mesos—通用的集群管理,可以在其上运行Hadoop MapReduce和一些服务应用。
  • Hadoop YARN—Hadoop2中的资源管理器。

注意
1、在集群不是特别大,并且没有mapReduce和Spark同时运行的需求的情况下,用Standalone模式效率最高。
2、Spark可以在应用间(通过集群管理器)和应用中(如果一个SparkContext中有多项计算任务)进行资源调度。

Running Spark on YARN

cluster mode

./bin/spark-submit --class org.apache.spark.examples.SparkPi \
--master yarn \
--deploy-mode cluster \
--driver-memory 4g \
--executor-memory 2g \
--executor-cores 1 \
lib/spark-examples*.jar \
10

client mode

./bin/spark-submit --class org.apache.spark.examples.SparkPi \
--master yarn \
--deploy-mode client \
--driver-memory 4g \
--executor-memory 2g \
--executor-cores 1 \
lib/spark-examples*.jar \
10

spark-submit 详细参数说明

参数名参数说明
—mastermaster 的地址,提交任务到哪里执行,例如 spark://host:port, yarn, local。具体指可参考下面关于Master_URL的列表
—deploy-mode在本地 (client) 启动 driver 或在 cluster 上启动,默认是 client
—class应用程序的主类,仅针对 java 或 scala 应用
—name应用程序的名称
—jars用逗号分隔的本地 jar 包,设置后,这些 jar 将包含在 driver 和 executor 的 classpath 下
—packages包含在driver 和executor 的 classpath 中的 jar 的 maven 坐标
—exclude-packages为了避免冲突 而指定不包含的 package
—repositories远程 repository
—conf PROP=VALUE指定 spark 配置属性的值, 例如 -conf spark.executor.extraJavaOptions=”-XX:MaxPermSize=256m”
—properties-file加载的配置文件,默认为 conf/spark-defaults.conf
—driver-memoryDriver内存,默认 1G
—driver-java-options传给 driver 的额外的 Java 选项
—driver-library-path传给 driver 的额外的库路径
—driver-class-path传给 driver 的额外的类路径
—driver-coresDriver 的核数,默认是1。在 yarn 或者 standalone 下使用
—executor-memory每个 executor 的内存,默认是1G
—total-executor-cores所有 executor 总共的核数。仅仅在 mesos 或者 standalone 下使用
—num-executors启动的 executor 数量。默认为2。在 yarn 下使用
—executor-core每个 executor 的核数。在yarn或者standalone下使用

Master_URL的值

Master URL含义
local使用1个worker线程在本地运行Spark应用程序
local[K]使用K个worker线程在本地运行Spark应用程序
local使用所有剩余worker线程在本地运行Spark应用程序
spark://HOST:PORT连接到Spark Standalone集群,以便在该集群上运行Spark应用程序
mesos://HOST:PORT连接到Mesos集群,以便在该集群上运行Spark应用程序
yarn-client以client方式连接到YARN集群,集群的定位由环境变量HADOOP_CONF_DIR定义,该方式driver在client运行。
yarn-cluster以cluster方式连接到YARN集群,集群的定位由环境变量HADOOP_CONF_DIR定义,该方式driver也在集群中运行。

区分client,cluster,本地模式

下图是典型的client模式,spark的drive在任务提交的本机上。
spark client 运行模式

下图是cluster模式,spark drive在yarn上。
spark cluster 运行模式

三种模式的比较

Yarn ClusterYarn ClientSpark Standalone
Driver在哪里运行Application MasterClientClient
谁请求资源Application MasterApplication MasterClient
谁启动executor进程Yarn NodeManagerYarn NodeManagerSpark Slave
驻内存进程1.Yarn ResourceManager 2.NodeManager1.Yarn ResourceManager 2.NodeManager1.Spark Master 2.Spark Worker
是否支持Spark ShellNoYesYes

spark-submit提交应用程序示例

# Run application locally on 8 cores(本地模式8核)
./bin/spark-submit \--class org.apache.spark.examples.SparkPi \--master local[8] \/path/to/examples.jar \100
# Run on a Spark standalone cluster in client deploy mode(standalone client模式)
./bin/spark-submit \--class org.apache.spark.examples.SparkPi \--master spark://207.184.161.138:7077 \--executor-memory 20G \--total-executor-cores 100 \/path/to/examples.jar \1000
# Run on a Spark standalone cluster in cluster deploy mode with supervise(standalone cluster模式使用supervise)
./bin/spark-submit \--class org.apache.spark.examples.SparkPi \--master spark://207.184.161.138:7077 \--deploy-mode cluster \--supervise \--executor-memory 20G \--total-executor-cores 100 \/path/to/examples.jar \1000
# Run on a YARN cluster(YARN cluster模式)
export HADOOP_CONF_DIR=XXX
./bin/spark-submit \--class org.apache.spark.examples.SparkPi \--master yarn \--deploy-mode cluster \  # can be client for client mode--executor-memory 20G \--num-executors 50 \/path/to/examples.jar \1000
# Run on a Mesos cluster in cluster deploy mode with supervise(Mesos cluster模式使用supervise)
./bin/spark-submit \--class org.apache.spark.examples.SparkPi \--master mesos://207.184.161.138:7077 \--deploy-mode cluster \--supervise \--executor-memory 20G \--total-executor-cores 100 \http://path/to/examples.jar \1000
# Run a Python application on a Spark standalone cluster(standalone cluster模式提交python application)
./bin/spark-submit \--master spark://207.184.161.138:7077 \examples/src/main/python/pi.py \1000

一个例子

spark-submit \
--master yarn \
--queue root.sparkstreaming \
--deploy-mode cluster \
--supervise \
--name spark-job \
--num-executors 20 \
--executor-cores 2 \
--executor-memory 4g \
--conf spark.dynamicAllocation.maxExecutors=9 \
--files commons.xml \
--class com.***.realtime.helper.HelperHandle \
BSS-ONSS-Spark-Realtime-1.0-SNAPSHOT.jar 500
http://www.jinmujx.cn/news/117828.html

相关文章:

  • 网站排行查询seo研究
  • 用Axure做的网站原型百度云中国制造网
  • 漳浦县建设局网站sem代运营公司
  • 使用网站模板快速建站吴忠seo
  • 广州网站建设gzqiyi北大青鸟培训机构官网
  • 门户网站建设自查整改今日国际新闻事件
  • 怎么做网站首页关键词互联网媒体广告公司
  • AWS免费套餐做网站可以吗济南seo优化外包
  • 做微网站的公司怎么搭建自己的网站
  • 嵊州门户网站平台推广精准客源
  • 网站建设 上海珍岛石家庄网站seo外包
  • 做灯箱的网站seo教程自学网
  • 网站开发技术路线网络营销方案策划论文
  • 免费建立网站有必要吗营销软文
  • 临漳网站建设互联网运营自学课程
  • 用bootstarp做的网站长沙百度关键词排名
  • 做视频网站视频存放问题营销的手段和方法
  • 域名备案用的网站建设方案沈阳seo排名收费
  • 如何做菠菜网站代理个人怎么注册自己的网站
  • 瑜伽网站设计模板建站教程
  • 美橙互联同类型网站网站平台推广
  • 营销网站的设计与实现杭州网站优化流程
  • 青岛网站设计哪家公司网推接单平台
  • 网站制作需要学习什么seo关键词优化提高网站排名
  • 有专业做网站的吗gre考全网营销代理加盟
  • 滕州网站制作seo三人行论坛
  • 包头seo推广哪家专业湛江seo推广外包
  • 网站后台 验证码错误南京seo按天计费
  • 使用网站效果深圳百度国际大厦
  • 网站初期 权重怎么做百度网首页官网登录