当前位置: 首页 > news >正文

欧洲人喜欢什么样的服务器seo包年优化平台

欧洲人喜欢什么样的服务器,seo包年优化平台,北京市住建委和城乡建设委员会网站,机构培训班危险品的运输涉及从离开仓库到由车辆运输到目的地的风险。监控事故、车辆运动动态以及车辆通过特定区域的频率对于监督车辆运输危险品的过程至关重要。 在线工具推荐: 三维数字孪生场景工具 - GLTF/GLB在线编辑器 - Three.js AI自动纹理化开发 - YOLO 虚幻合成数…

危险品的运输涉及从离开仓库到由车辆运输到目的地的风险。监控事故、车辆运动动态以及车辆通过特定区域的频率对于监督车辆运输危险品的过程至关重要。

在线工具推荐: 三维数字孪生场景工具  -  GLTF/GLB在线编辑器  -  Three.js AI自动纹理化开发  YOLO 虚幻合成数据生成器  -  3D模型在线转换  -   3D模型预览图生成服务

危险品是指具有爆炸性、易燃性、中毒杀人、烧成放射性等特性,在运输、装卸与存放的保管过程中,容易造成人身伤害,需要特别保护的物品造成财产损失。随着社会经济的发展,危险品的生产和使用量呈逐年上升趋势,而中国是世界上仅次于美国的危险品生产第二大国,这恰恰使得危险品的监督管理需要人们高度重视。2009年20月,秘鲁天然气运输卡车和一辆长途汽车撞到后面,造成10人死亡,5000人受伤。同年,美国运送有毒化学品的卡车氢萤石倾覆,并造成2005名居民紧急疏散。30年400月,国产京沪高速一代液氨运输车被揭露,造成近多人死亡,多人中毒,l居民万人以上被疏散,大量家畜和农作物死亡。造成的危害是巨大的,因此,危险品在公路运输过程中显然处于危险之中,因此,加强危险品运输过程的管理是极其紧迫的,势在必行的。

危险品车辆的GPS定位是动态车辆运动监控的主要基础。摄像机识别的车辆的次数和连续检测时间可用于确定危险货物车辆通过特定地点的具体频率和事故情况。危险品车辆识别的准确性受到环境特征(如照明、凌乱的背景和部分遮挡)的显着影响。

基于图像和深度学习的危险品车辆识别技术

两种基本的车辆识别技术是基于图像的,也是基于深度学习的。

基于图像的检测方法主要通过车辆图像特征和方向梯度直方图特征来识别车辆目标。基于车辆图像纹理和边缘特征的车辆检测系统的根本缺点是照明和车辆完整性会显着影响它们。然而,随着深度学习的不断进步,越来越多的研究人员正在研究使用深度学习进行车辆检测的主题。

在这项研究中,使用深度学习技术实现了车辆检测。为了实现快速、精确的车辆识别,研究人员增强了深度学习YOLO模型的训练阶段,并构建了阶段性训练模型。首先,使用高效的深度学习模型对危险品车辆进行训练,然后利用训练好的模型对危险品车辆进行识别。

本文介绍了一种基于基于图像和深度学习的危险品车辆识别技术的YOLO模型。YOLO架构速度快,每秒可处理45帧,使基于YOLO的架构可用于危险品车辆检测。

在本文章,将使用UnrealSynth虚幻合成数据生成器 来生成训练所需要的数据集,用户只需要将3D模型导入UnrealSynth中,经过简单的配置就可以自动生成数据集,非常的简单方便:

基于YOLO的实时计算机视觉危险品车辆检测:

1. 场景准备

  • 将模型导入到场景。
  • 配置场景先关参数,如:生成的图片数据集的图片分辨率、生成的图片的数量等。

2. 生成数据集

设置参数后,点击【确定】后会在本地目录中...\UnrealSynth\Windows\UnrealSynth\Content\UserData 生成本地合成数据集,本地数据包含两个文件夹以及一个 yaml 文件:images、labels、test.yaml 文件;images中存放着生成的图片数据集,labels中存放着生成的标注数据集。

images和labels目录下各有两个目录:train 和 val,train 目录表示训练数据目录,val 表示验证数据目录,标注数据的格式如下所示:

0 0.68724 0.458796 0.024479 0.039815
0 0.511719 0.504167 0.021354 0.034259
0 0.550781 0.596759 0.039062 0.04537
0 0.549219 0.368519 0.023438 0.044444
0 0.47526 0.504167 0.009896 0.030556
0 0.470313 0.69537 0.027083 0.035185
0 0.570052 0.499074 0.016146 0.040741
0 0.413542 0.344444 0.022917 0.037037
0 0.613802 0.562037 0.015104 0.027778
0 0.477344 0.569444 0.017188 0.016667

synth.yaml是数据的配置文件,数据格式如下:

path:
train: images
val: images
test:
names:0: Oil tank truck

3、YOLOv5模型训练

生成数据集后,下一步就是利用Yolo来训练模型,第一步,打开 ultralytics hub 在线训练工具,将刚才生成的数据集上传到ultralytics hub

将合成数据上传后,选择YOLO模型版本,确定好YOLO模型版本后,点击【continue】就可以开始使用ultralytics来训练集我们的模型了,如下所示:

选择YOLO模型后点击下一步将会生成用户key值,这个key值将在下一步模型训练时用到

复制【step1】中中的内容,点击【step2】进入到google Colab页面,如下所示:

首先,先点击step中的播放按钮,安装环境依赖,如上图所示;环境安装成功后,接下来将【Start】中的整个内容给都换掉,用在上一步中复制的key值整体替换里面原来的信息,如图:

然后点击播放按钮,开始训练模型,如下图所示:

模型训练需要一段时间...

4、训练模型验证

模型训练完成之后,可以用训练好的模型验证一下,用几张工地工人干活的场景图片,导入用图片来验证一下,操作步骤如图所示:

图片验证结果如下:

 转载:机器学习之危险品车辆目标检测

http://www.jinmujx.cn/news/116693.html

相关文章:

  • 给公众号做头像的网站网站制作推广电话
  • 专业网站建设报价运营主要做什么工作
  • 怎么做企业招聘网站站长工具seo源码
  • 网站开发微信店铺引流的30种方法
  • 工程公司简介安卓手机优化软件排名
  • 深圳企业做网站公司有哪些百度seo怎么做网站内容优化
  • 长沙网站制作培训基地治疗腰椎间盘突出的特效药
  • 做网站开发 用的最多的语言拓客软件
  • wordpress gzip 和 cache 冲突吗成都最好的网站推广优化公司
  • 企业英文网站营销的主要目的有哪些
  • 广西网站设计服务企业网站建设方案策划书
  • 小程序赚钱的几种方法seo标题优化裤子关键词
  • 如何用axure做网站什么是网络营销与直播电商
  • 做网站还能赚钱今日热点新闻头条国内
  • 北京附近做网站的公司有哪些网页设计一般用什么软件
  • wordpress访问人数培训机构seo
  • 域名空间网站怎么做网站建设是干什么的
  • 网站建设行业赚钱么宁波如何做抖音seo搜索优化
  • 闵行区 网站制作桔子seo工具
  • 网站安全建设app开发软件
  • 中国网站建设公司排行榜2024北京又开始核酸了吗今天
  • 现在网站建设用什么软件廊坊百度提升优化
  • 哪些网站是做包装的免费自己制作网站
  • 湛江网站制作系统百度seo优化策略
  • 在百度里面做个网站怎么做软文300字案例
  • 深圳品牌营销型网站建设竞价账户托管哪家好
  • 学做游戏 网站域名查询注册信息查询
  • 网站建设开发步骤百度权重
  • 域名备案网站购买黑龙江今日新闻
  • 李沧网站建设电话给你一个网站seo如何做