当前位置: 首页 > news >正文

网站设计多少钱一个统计工具

网站设计多少钱一个,统计工具,wordpress分享qq插件下载地址,微信网站建设报价表在 Spark 中,explain 函数用于提供数据框(DataFrame)或 SQL 查询的逻辑计划和物理执行计划的详细解释。它可以帮助开发者理解 Spark 是如何执行查询的,包括优化过程、转换步骤以及它将采用的物理执行策略。 1. 逻辑计划 (Logical…

在 Spark 中,explain 函数用于提供数据框(DataFrame)或 SQL 查询的逻辑计划和物理执行计划的详细解释。它可以帮助开发者理解 Spark 是如何执行查询的,包括优化过程、转换步骤以及它将采用的物理执行策略。

1. 逻辑计划 (Logical Plan)

逻辑计划代表了 Spark 将应用于处理数据的抽象操作序列。它是基于用户提供的 DataFrame API 或 SQL 查询,经过优化前的中间表示。

  • 未优化的逻辑计划:这是查询的初始形式,尚未应用任何优化。
  • 优化后的逻辑计划:这是经过 Spark 应用了一些规则(如谓词下推、常量折叠、简化等)后的查询计划。

2. 物理计划 (Physical Plan)

物理计划表示 Spark 如何实际执行查询。它包括如何对数据进行 Shuffle(洗牌)、分区或合并的详细信息。物理计划通常有多个选择,Spark 会根据成本(如计算开销、数据传输等)选择最优的执行计划。

  • RDD(弹性分布式数据集)操作:物理计划会显示 Spark 执行数据处理时所使用的具体转换步骤和操作。

3. 基于成本的优化 (Cost-Based Optimization)

在某些情况下,Spark 还可以执行基于成本的优化(如选择不同的连接策略或决定是否执行广播连接),具体取决于可用的统计信息。

4. 使用示例

4.1 PySpark 示例:

df = spark.read.csv("data.csv", header=True, inferSchema=True)# 执行一些转换操作
df_filtered = df.filter(df["age"] > 25).select("name", "age")# 输出查询执行计划
df_filtered.explain(True)

4.2 Spark SQL 示例:

# 使用 SQL 执行查询
spark.sql("SELECT name, age FROM people WHERE age > 25").explain(True)

输出 explain(True) 的结果:

当调用 explain(True) 时,您会看到一个包含 逻辑计划物理计划 的详细输出。以下是一个简单的输出示例:

== Physical Plan ==
*Project [name#0, age#1]
+- *Filter (age#1 > 25)+- *Scan ExistingRDD[name#0, age#1] Batched: false, Format: CSV, Location: InMemoryFileIndex[file:/data.csv], PartitionFilters: [], PushedFilters: [GreaterThan(age,25)], ReadSchema: struct<name:string,age:int>== Logical Plan ==
Project [name#0, age#1]
+- Filter (age#1 > 25)+- Relation[name#0, age#1] csv

输出内容的关键元素:

  1. 物理计划
    • Project:表示选取了哪些列。
    • Filter:表示应用的过滤条件。
    • Scan ExistingRDD:表示数据的读取来源,在这个例子中是 CSV 文件。
  2. 逻辑计划
    • 逻辑计划中显示了用户代码中定义的 ProjectFilter 操作。

使用 explain 的场景:

  • 优化调试:可以使用 explain 来检查 Spark 是否正确优化了查询。
  • 连接优化:如果您不确定 Spark 如何处理连接,explain 可以帮助您查看 Spark 是否使用了合适的连接策略(例如,广播连接或 Shuffle 连接)。
  • 性能调优:通过检查物理计划,您可以识别出 Spark 可能执行的无谓操作,或者有机会进一步优化的地方。

5. 详细语法

EXPLAIN [ EXTENDED | CODEGEN | COST | FORMATTED ] statement

EXTENDED
生成解析后的逻辑计划、分析后的逻辑计划、优化后的逻辑计划和物理计划。
解析后的逻辑计划是从查询中提取的未解析计划。
分析后的逻辑计划通过将未解析的属性(unresolvedAttribute)和未解析的关系(unresolvedRelation)转换为完全类型化的对象来完成转换。
优化后的逻辑计划通过一组优化规则进行转换,最终生成物理计划。

CODEGEN
生成语句的代码(如果有)和物理计划。

COST
如果计划节点的统计信息可用,生成逻辑计划和统计信息。

FORMATTED
生成两个部分:物理计划概述和节点详细信息。

statement
指定要解释的SQL语句。

-- Default Output
EXPLAIN select k, sum(v) from values (1, 2), (1, 3) t(k, v) group by k;
+----------------------------------------------------+
|                                                plan|
+----------------------------------------------------+
| == Physical Plan ==*(2) HashAggregate(keys=[k#33], functions=[sum(cast(v#34 as bigint))])+- Exchange hashpartitioning(k#33, 200), true, [id=#59]+- *(1) HashAggregate(keys=[k#33], functions=[partial_sum(cast(v#34 as bigint))])+- *(1) LocalTableScan [k#33, v#34]
|
+------------------------------------------------------ Using Extended
EXPLAIN EXTENDED select k, sum(v) from values (1, 2), (1, 3) t(k, v) group by k;
+----------------------------------------------------+
|                                                plan|
+----------------------------------------------------+
| == Parsed Logical Plan =='Aggregate ['k], ['k, unresolvedalias('sum('v), None)]+- 'SubqueryAlias `t`+- 'UnresolvedInlineTable [k, v], [List(1, 2), List(1, 3)]== Analyzed Logical Plan ==k: int, sum(v): bigintAggregate [k#47], [k#47, sum(cast(v#48 as bigint)) AS sum(v)#50L]+- SubqueryAlias `t`+- LocalRelation [k#47, v#48]== Optimized Logical Plan ==Aggregate [k#47], [k#47, sum(cast(v#48 as bigint)) AS sum(v)#50L]+- LocalRelation [k#47, v#48]== Physical Plan ==*(2) HashAggregate(keys=[k#47], functions=[sum(cast(v#48 as bigint))], output=[k#47, sum(v)#50L])
+- Exchange hashpartitioning(k#47, 200), true, [id=#79]+- *(1) HashAggregate(keys=[k#47], functions=[partial_sum(cast(v#48 as bigint))], output=[k#47, sum#52L])+- *(1) LocalTableScan [k#47, v#48]
|
+----------------------------------------------------+-- Using Formatted
EXPLAIN FORMATTED select k, sum(v) from values (1, 2), (1, 3) t(k, v) group by k;
+----------------------------------------------------+
|                                                plan|
+----------------------------------------------------+
| == Physical Plan ==* HashAggregate (4)+- Exchange (3)+- * HashAggregate (2)+- * LocalTableScan (1)(1) LocalTableScan [codegen id : 1]Output: [k#19, v#20](2) HashAggregate [codegen id : 1]Input: [k#19, v#20](3) ExchangeInput: [k#19, sum#24L](4) HashAggregate [codegen id : 2]Input: [k#19, sum#24L]
http://www.jinmujx.cn/news/113275.html

相关文章:

  • 网站建设需求填表网络销售怎么做才能做好
  • 建设银行appseo推广灰色词
  • 专门做行测题的网站发外链的网址
  • 服务器上做网站网络营销推广有效方式
  • 网页设计规范文档全网优化推广
  • 网站建设道冲站长工具一区
  • 做网站还是做公众号免费站长工具
  • 沂源做网站软文推广文章
  • 网站搭建的策略与方法天津seo公司
  • 聊城网站建设设计实力公司专业优化网站排名
  • 通辽网站建设公司新疆头条今日头条新闻
  • 管理咨询的作用北京做网络优化的公司
  • 百度做网站为什么上阿里云备案91关键词排名
  • 怎么做网站优化 siteseo英文怎么读
  • 打代码怎么做网站游戏挂机赚钱一小时20
  • 网站站长英语全国前十名小程序开发公司
  • 西安做网站的公司在哪苹果自研搜索引擎或为替代谷歌
  • 摄影网站建设开题报告百度在线咨询
  • markethub wordpress长沙网站包年优化
  • 贸易网站开发宣传营销方式有哪些
  • 做网站读哪个专业关键词调词平台哪个好
  • 网站建设品牌公司推荐seo关键词优化的技巧和方法
  • 广州一起做网站网站怎么优化排名
  • 苏州营销网站建设公司排名最新百度关键词排名
  • 桂林网站建设公司免费网站申请注册
  • 国内人做韩国网站一般都卖什么东西百度搜索官网
  • 如今做哪个网站能致富长沙网络推广公司
  • 建企业网站赣州seo唐三
  • 英文字体设计网站跟我学seo
  • 福州婚庆网站建设哪个公司比较专业腾讯网qq网站