当前位置: 首页 > news >正文

网站建设属于什么it培训班

网站建设属于什么,it培训班,怎么做镜像网站,重庆公司名称网上核名目录 1、位置编码器的作用 2、代码演示 (1)、使用unsqueeze扩展维度 (2)、使用squeeze降维 (3)、显示张量维度 (4)、随机失活张量中的数值 3、定义位置编码器类,我…

目录

1、位置编码器的作用

2、代码演示

(1)、使用unsqueeze扩展维度

(2)、使用squeeze降维

(3)、显示张量维度

(4)、随机失活张量中的数值

3、定义位置编码器类,我们同样把它看作是一个层,因此会继承nn.Module


1、位置编码器的作用

  • 因为在Transformers的编码器结构中,并没有针对词汇位置信息的处理,因此需要在Embedding层后加入位置编码器,将词汇位置不同可能会产生不同语义的信息加入到词嵌入张量中,以弥补位置信息的缺失

2、代码演示

(1)、使用unsqueeze扩展维度

position = torch.arange(0,10)
print(position.shape)
position = torch.arange(0,10).unsqueeze(1)   #unsqueeze(0) 扩展第一个维度torch.Size([1, 10]),#unsqueeze(1) 扩展第二个维度torch.Size([10, 1])#unsqueeze(2) 是错误的写法
print(position)
print(position.shape)

(2)、使用squeeze降维

x = torch.LongTensor([[[1],[4]],[[7],[10]]])
print(x)
print(x.shape)
y = torch.squeeze(x)
print(y.shape)
print(y)

tensor([[[ 1],
         [ 4]],

        [[ 7],
         [10]]])
torch.Size([2, 2, 1])
torch.Size([2, 2])
tensor([[ 1,  4],
        [ 7, 10]])

在使用squeeze函数进行降维时,只有当被降维的维度的大小为1时才会将其降维。如果被降维的维度大小不为1,则不会对张量的值产生影响。因为上面的数据中第三个维度为1,所以将第三维进行降维,得到一个二维张量

(3)、显示张量维度

x = torch.LongTensor([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]])
print(x.size(0))
print(x.size(1))
print(x.size(2))

(4)、随机失活张量中的数值

m = nn.Dropout(p=0.2)
input = torch.rand(4,5)
output = m(input)
print(output)

在张量中的 20 个数据中有 20% 的随机失活为0,也即有 4 个

3、定义位置编码器类,我们同样把它看作是一个层,因此会继承nn.Module

import torch
from torch.autograd import Variable
import math
import torch.nn as nn
class PositionalEncoding(nn.Module):def __init__(self,d_model,dropout,max_len=5000):""":param d_model: 词嵌入的维度:param dropout: 随机失活,置0比率:param max_len: 每个句子的最大长度,也就是每个句子中单词的最大个数"""super(PositionalEncoding,self).__init__()self.dropout = nn.Dropout(p=dropout)pe = torch.zeros(max_len,d_model) # 初始化一个位置编码器矩阵,它是一个0矩阵,矩阵的大小是max_len * d_modelposition = torch.arange(0,max_len).unsqueeze(1) # 初始一个绝对位置矩阵div_term = torch.exp(torch.arange(0,d_model,2)*-(math.log(1000.0)/d_model))pe[:,0::2] = torch.sin(position*div_term)pe[:,1::2] = torch.cos(position*div_term)pe = pe.unsqueeze(0)  # 将二维矩阵扩展为三维和embedding的输出(一个三维向量)相加self.register_buffer('pe',pe) # 把pe位置编码矩阵注册成模型的buffer,对模型是有帮助的,但是却不是模型结构中的超参数或者参数,不需要随着优化步骤进行更新的增益对象。注册之后我们就可以在模型保存后重加载时和模型结构与参数异同被加载def fordward(self,x):""":param x: 表示文本序列的词嵌入表示:return: 最后使用self.dropout(x)对对象进行“丢弃”操作,并返回结果"""x = x + Variable(self.pe[:, :x.size(1)],requires_grad = False)   # 不需要梯度求导,而且使用切片操作,因为我们默认的max_len为5000,但是很难一个句子有5000个词汇,所以要根据传递过来的实际单词的个数对创建的位置编码矩阵进行切片操作return self.dropout(x)
# 构建Embedding类来实现文本嵌入层
class Embeddings(nn.Module):def __init__(self,vocab,d_model):""":param vocab: 词表的大小:param d_model: 词嵌入的维度"""super(Embeddings,self).__init__()self.lut = nn.Embedding(vocab,d_model)self.d_model = d_modeldef forward(self,x):""":param x: 因为Embedding层是首层,所以代表输入给模型的文本通过词汇映射后的张量:return:"""return self.lut(x) * math.sqrt(self.d_model)
# 实例化参数
d_model = 512
dropout = 0.1
max_len = 60  # 句子最大长度
# 输入 x 是 Embedding层输出的张量,形状为 2 * 4 * 512
x = Variable(torch.LongTensor([[100,2,42,508],[491,998,1,221]]))
emb = Embeddings(1000,512)
embr = emb(x)
print('embr.shape:',embr.shape)  # 2 * 4 * 512
pe = PositionalEncoding(d_model, dropout,max_len)
pe_result = pe(embr)
print(pe_result)
print(pe_result.shape)
http://www.jinmujx.cn/news/111674.html

相关文章:

  • 新郑做网站公司百度知道提问
  • 滚屏网站模板合肥百度搜索排名优化
  • 如何做网站title小标图精准信息300099
  • 网站开发公网站优化推广招聘
  • 企业网站建设运营的灵魂是什么最佳bt磁力猫
  • 十大搞笑素材网站郑州百度推广托管
  • 天津做网站哪家好近三天的国内新闻
  • 在线做维恩图的生物信息学网站丁香人才网官方网站
  • 基于drupal系统的网站开发-毕业论文推广公司app主要做什么
  • 简约型网站建设制作网站需要什么软件
  • 做标准件网站google浏览器网页版
  • 木方东莞网站建设技术支持seoul是什么意思
  • 网站开发建设电商平台有哪些
  • h5网站搭建百度一下你就知道了官网
  • 哪个网站教人做美食seo可以从哪些方面优化
  • 深圳福田网站制作青岛seo建站
  • 网站优化怎么样做网站推广优化外链
  • 自动做PPT的网站seo是怎么优化
  • 建设银行宁波分行招聘网站的搜索引擎优化
  • 上海做设计公司网站百度客户端电脑版
  • 郑州做网站和推广哪家好百度竞价关键词查询
  • 网站链接锚文字怎么做海外网站推广的公司
  • 网站支付宝怎么做的整站优化seo公司哪家好
  • 什么是网络营销型网站看广告赚钱的平台
  • 中国十佳网站建设公司国家税务总局网
  • sql数据库的网站迁移优质外链
  • wordpress 采集搜索引擎优化心得体会
  • 旅游景点网站策划书google推广技巧
  • 网站地图建设seo搜索引擎优化试题
  • 服装网站页面设计网页设计软件