当前位置: 首页 > news >正文

网站的新闻模块怎么做营销网站建设专家

网站的新闻模块怎么做,营销网站建设专家,网站做分布式部署,营销推广方案模板# 可以使用以下3种方式构建模型: # # 1,继承nn.Module基类构建自定义模型。 # # 2,使用nn.Sequential按层顺序构建模型。 # # 3,继承nn.Module基类构建模型并辅助应用模型容器进行封装(nn.Sequential,nn.ModuleList,nn.ModuleDict…
# 可以使用以下3种方式构建模型:
#
# 1,继承nn.Module基类构建自定义模型。
#
# 2,使用nn.Sequential按层顺序构建模型。
#
# 3,继承nn.Module基类构建模型并辅助应用模型容器进行封装(nn.Sequential,nn.ModuleList,nn.ModuleDict)。
#
# 其中 第1种方式最为常见,第2种方式最简单,第3种方式最为灵活也较为复杂。
# 一、继承nn.Module基类构建自定义模型
from torch import nn
class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.conv1 = nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3)self.pool1 = nn.MaxPool2d(kernel_size = 2,stride = 2)self.conv2 = nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5)self.pool2 = nn.MaxPool2d(kernel_size = 2,stride = 2)self.dropout = nn.Dropout2d(p = 0.1)self.adaptive_pool = nn.AdaptiveMaxPool2d((1,1))self.flatten = nn.Flatten()self.linear1 = nn.Linear(64,32)self.relu = nn.ReLU()self.linear2 = nn.Linear(32,1)def forward(self,x):x = self.conv1(x)x = self.pool1(x)x = self.conv2(x)x = self.pool2(x)x = self.dropout(x)x = self.adaptive_pool(x)x = self.flatten(x)x = self.linear1(x)x = self.relu(x)y = self.linear2(x)return y
net = Net()
print(net)
#查看参数
from torchkeras import summary
summary(net,input_shape= (3,32,32));

 # 二、使用nn.Sequential按层顺序构建模型 # 利用add_module方法

net = nn.Sequential()
net.add_module("conv1",nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3))
net.add_module("pool1",nn.MaxPool2d(kernel_size = 2,stride = 2))
net.add_module("conv2",nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5))
net.add_module("pool2",nn.MaxPool2d(kernel_size = 2,stride = 2))
net.add_module("dropout",nn.Dropout2d(p = 0.1))
net.add_module("adaptive_pool",nn.AdaptiveMaxPool2d((1,1)))
net.add_module("flatten",nn.Flatten())
net.add_module("linear1",nn.Linear(64,32))
net.add_module("relu",nn.ReLU())
net.add_module("linear2",nn.Linear(32,1))
print(net)
# 利用变长参数
net = nn.Sequential(nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3),nn.MaxPool2d(kernel_size = 2,stride = 2),nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5),nn.MaxPool2d(kernel_size = 2,stride = 2),nn.Dropout2d(p = 0.1),nn.AdaptiveMaxPool2d((1,1)),nn.Flatten(),nn.Linear(64,32),nn.ReLU(),nn.Linear(32,1)
)
print(net)
# 三、继承nn.Module基类构建模型并辅助应用模型容器进行封装
# nn.Sequential作为模型容器
class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.conv = nn.Sequential(nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3),nn.MaxPool2d(kernel_size = 2,stride = 2),nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5),nn.MaxPool2d(kernel_size = 2,stride = 2),nn.Dropout2d(p = 0.1),nn.AdaptiveMaxPool2d((1,1)))self.dense = nn.Sequential(nn.Flatten(),nn.Linear(64,32),nn.ReLU(),nn.Linear(32,1))def forward(self,x):x = self.conv(x)y = self.dense(x)return y
net = Net()
print(net)
# nn.ModuleList作为模型容器
# 注意下面中的ModuleList不能用Python中的列表代替。(即不用省略)
class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.layers = nn.ModuleList([nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3),nn.MaxPool2d(kernel_size = 2,stride = 2),nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5),nn.MaxPool2d(kernel_size = 2,stride = 2),nn.Dropout2d(p = 0.1),nn.AdaptiveMaxPool2d((1,1)),nn.Flatten(),nn.Linear(64,32),nn.ReLU(),nn.Linear(32,1)])def forward(self,x):for layer in self.layers:x = layer(x)return x
net = Net()
print(net)
# nn.ModuleDict作为模型容器
class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.layers_dict = nn.ModuleDict({"conv1":nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3),"pool": nn.MaxPool2d(kernel_size = 2,stride = 2),"conv2":nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5),"dropout": nn.Dropout2d(p = 0.1),"adaptive":nn.AdaptiveMaxPool2d((1,1)),"flatten": nn.Flatten(),"linear1": nn.Linear(64,32),"relu":nn.ReLU(),"linear2": nn.Linear(32,1)})def forward(self,x):layers = ["conv1","pool","conv2","pool","dropout","adaptive","flatten","linear1","relu","linear2","sigmoid"]for layer in layers:x = self.layers_dict[layer](x) # 只找有的 sigmoid是没有的return x
net = Net()
print(net)

http://www.jinmujx.cn/news/110622.html

相关文章:

  • 船山网站建设搜索优化网络推广
  • 网站前端开发培训资料关键词seo排名怎么做的
  • 建设网站需要几个步骤厦门seo关键词优化代运营
  • 怎么做网站代购app推广怎么做
  • 周口哪里做网站360建站系统
  • python适合网站开发吗深圳网络推广推荐
  • 杭州北京网站建设推广文章的步骤
  • 深圳网站建设潮动九州网络营销的方式有几种
  • 建设门户网站的目的常德seo快速排名
  • 最好看免费视频直播在线seo关键词是什么
  • 苏州做网站优化公司哪家好最新实时新闻
  • wordpress streamango安徽网站推广优化
  • 网站建设制作设计开发北京网优化seo公司
  • 公司备案网站负责人是谁公司推广策划
  • 网站的色彩人民日报今日新闻
  • 衢州 做 网站网址大全浏览器
  • 有什么网站可以做java算法河南网站建设定制
  • asp网站栏目如何修改网络推广公司运作
  • 做金融网站拘留多久手机百度引擎搜索入口
  • 自己建立网站要钱吗小程序模板
  • 做时彩网站违法吗电商怎么推广自己的产品
  • 徐州做网站的公司哪些好seo报告
  • 国内电商平台网站制作排行榜达州seo
  • 重庆网站建设电话网络营销价格策略有哪些
  • 重庆网上制作网站福州seo推广
  • 医药类网站怎么做seo武汉seo工作室
  • 没有网站可以做app吗网络优化工具app手机版
  • 信息流广告代理商的盈利模式东莞seo排名扣费
  • 网站开发任务清单2022智慧树互联网与营销创新
  • 动态网站站点的建立免费com网站域名注册